- TI nspire
[TI-nspire CAS] Function - cSolve : 복소수 해 찾기
1. cSolve 란?
- cSolve 는 '복소수가 포함된 수식'이나 '복소수가 해인 수식'의 해를 찾는 함수입니다.
- 찾아진 해는 실수꼴일 수도 있고, 실수꼴이 아닐 수도 있습니다.
- cSolve 는 도메인이 real 로 설정된 상태이더라도, 일시적으로 도메인을 복소수로 지정합니다.
하지만, 복소수를 취급하실거면 rectangular 든 polar든 선택하시는 것이 좋습니다.
2. 사용 예 1 (방정식, 부등식)
- cSolve(Equation, Var) ⇒ Boolean expression
- cSolve(Equation, Var=Guess) ⇒ Boolean expression
- cSolve(Inequality, Var) ⇒ Boolean expression
3. 사용 예 2 (연립 방정식)
- cSolve(Eqn1 and Eqn2 [and…], VarOrGuess1, VarOrGuess2 [, … ]) ⇒ Boolean expression
- cSolve(SystemOfEqns, VarOrGuess1, VarOrGuess2 [, …]) ⇒ Boolean expression
- 모든 방정식(Eqn)이 다항식(polynomials)이고, 어떠한 초기 추정값도 지정되지 않았다면, cSolve 는 모든 복소수 해를 결정하기 위해 lexical Gröbner/Buchberger elimination method 를 사용합니다.
- 어떠한 방정식(Eqn)이라도 어떠한 변수에 대해 다항식이 아니(non-polynomial)고, 어떠한 초기 추정값도 지정되지 않았으며, 모든 방정식이 모든 해 변수들에 대해 리니어(linear)하다면, cSolve 는 모든 해를 결정하기 위해 Gaussian elimination 을 사용합니다.
- 계산 소요 시간이나 메모리 사용량은 해로 적어놓은 변수의 순서(order)에 매우 크게 영향을 받습니다. 만약 (무한 루프 등) 인내력의 한계에 도달하게 된다면, 방정식 내의 변수들이나 해로 지정한 변수 리스트를 재조정해보시는 것도 좋습니다.
- 연립 방정식 시스템이 모든 변수들에 대해 다항식도 아니고 해 변수들이 리니어하지도 않(non-linear)다면, cSolve는 최적의 해 하나를 찾기 위해 approximate iterative method 를 사용합니다.
조건 1 : '해 변수의 갯수' = '방정식의 갯수'
조건 2 : 방정식 내 모든 변수들이 숫자로 간소화될 수 있어야 함.
4. 주의사항
- cSolve 는 TI-nspire (non-CAS) 에서는 사용할 수 없습니다.
- OS 버전에 따라 cSolve 결과가 다를 수도 있습니다.
- Setting 에서
가급적(x)반드시(!) Angle=Radian 으로 바꿔두세요.
Degree 등일 때는 "Error: Domain error" 내지 "false" 오류가 발생할 수 있습니다. - 결과값의 표시 방법은 Document Setting - Real or Complex Format 에 영향을 받습니다.
x-y 직교좌표일 때는 Rectangular 를 선택하시는 것을 추천드리고,
r-θ 극좌표일 때는 Polar를 선택하시면 됩니다. 이 때는 Deg / Rad 에 또 영향을 받습니다. - solve와 비교하면 계산 시간이 오래 걸릴 수 있고, 재수가 없으면 무한 루프에 빠지기도 합니다.
이러한 사태를 방지하기 위해서는 초기값을 넣어주시면 해결될 수 있습니다.
approx로 계산해서 해결되기도 합니다.
5. 상세 설명
- solve와 달리 csolve는 실수해/복소수해 모두를 찾아줍니다.
- (이 예제에서) 'Solve 해집합' ⊂ 'cSolve 해집합' 성립
- 분모가 홀수인 분수 지수꼴에서는 'Solve 해집합' ⊂ 'cSolve 해집합'이 아닐 수 있음.
- cSolve 는 우선적으로 exact symbolic method 를 사용하지만, 경우에 따라 (알아서) 반복 근사법을 사용하기도 합니다.
- (복소수 연립방정식에서) 간혹 무한 루프에 빠지는 경우가 있습니다. (모래시계)
- 이 때는 【on】 버튼을 길게 눌러 연산을 강제로 멈추게(break, "Calculation Interrupted") 할 수 있습니다.
http://www.allcalc.org/4619 - 아니면 명령시부터 【ctrl】【enter】 를 이용해 반복 근사법만 계산하도록 강제할 수도 있습니다.
이 때 결과값은 소숫점 형태(Decimal Form)로만 표현됩니다. - 아니면 변수에 초기 추정값을 지정하는 방법을 사용할 수도 있습니다.
추정값은 실수나 복소수 모두 가능합니다.
- 변수(var)끝에 밑줄(underscore)을 붙이면, 변수_(var_) 는 복소수로 취급됩니다.
- 복소수해를 가질 가능성이 있는 수식에서는 모든 다른 변수들에도 밑줄을 붙여주는 편이 좋습니다.
그렇지 않으면 기대하지 않은 결과값을 찾을 가능성이 있습니다.
- 연립방정식은 값이 없는 추가 변수(c_)를 포함할 수 있고, 이것은 나중에 숫자로 치환될 수 있습니다.
- 수식에는 없는 변수(w_) 를 포함하는 해
- 여기서 c 는 constants 의 약자입니다. (뒤에 붙는 숫자는 1~255까지 순차적으로 결정됩니다.)
- Gaussian elimination

- Approximate iterative method
- 복소수 해를 결정하기 위해서, 종종 복소수 초기 추정값이 필요합니다.
댓글2
-
세상의모든계산기
csolve 와 무한 루프
[TI-nspire] 계산기 먹통(=무한 루프=모래 시계=무한 로딩) 강제종료 방법
https://allcalc.org/4619
무한루프 회피하려면?
ㄴ 초기값 입력 or approx 계산 【ctrl】【enter】하면 되는데,
이 경우에는 approx 계산방법으로는 해결되지 않네요.
세상의모든계산기 님의 최근 댓글
solve 2025 10.16 4*4 행렬 계산이 가능한 fx-570EX 이후 계산기는 행렬 기능을 이용하는 방법도 있지만, 본문 방법이 더 편리한 것 같습니다. [fx-570 EX] 복소수 1차 연립방정식 해 구하기 (feat. MATRIX) https://allcalc.org/21582 2025 10.15 고장남 - POST 진입 실패, 모니터 안나옴 직접 사용할 일이 없어져서, 고향집에 가져다 놓고 어댑터만 꼽아 두었습니다. 마지막으로 켠 것은 25년 6월쯤이 아니었을까 싶습니다. (이상증상은 없었구요) 이번 추석에 가서 켜 보니까, 화면이 아예 안나오더라구요. 집에 가져와서 분해해 살펴보니까 - 어댑터 12V는 정상 - 어댑터 꼽으면 바로 POWER 는 켜집니다. ㄴ POWER ON -> Fan 돌아감 + 파워 LED 들어옴 + NVME에 LED 들어옴 ㄴ HDMI 1, 2 신호 전혀 안들어옴 (모니터 2대 확인) ㄴ 키보드에 LED 안들어옴 (USB 5V 가 안들어오는 듯 함) - 옆구리 버튼은 작동하지 않습니다. 길게 눌러도 꺼지지 않음. 하나씩 제거하면서 변수를 제거해 봤는데, 뭘 해도 상태가 똑같습니다. 보드쪽에 문제가 생긴 것 같습니다. 2025 10.14 다항식 나눗셈 (가장 정석적인 방법) (피제수, 나뉠 식) r1*r3 를 (제수, 나누는 식) r1+r3 로 직접 나누며, 여기서 r1을 변수로 취급합니다. 1. 몫 구하기: r1*r3 (나뉠 식)의 최고차항을 r1+r3 (나누는 식)의 최고차항 r1로 나눕니다. (r1*r3) / r1 = r3 <-- 이것이 몫(Quotient)이 됩니다. 2. 나머지 구하기: (원래 분자) - (몫 × 분모) 를 계산합니다. (r1*r3) - (r3 × (r1+r3)) = r1*r3 - (r1*r3 + r3^2) = -r3^2 <-- 이것이 나머지(Remainder)가 됩니다. 3. 결과 조합: 최종 결과는 `몫 + (나머지 / 나누는 식)` 형태로 씁니다. r3 + (-r3^2 / (r1+r3)) \[ \begin{array}{l} \phantom{r_1+r_3 \overline{) r_1 r_3}} r_3 \\ r_1+r_3 \overline{) \begin{array}[t]{@{}r@{}} r_1 r_3 \phantom{+r_3^2} \\ - (r_1 r_3 + r_3^2) \\ \hline -r_3^2 \\ \end{array}} \end{array} \] 2025 10.14 부분적 과정으로 분자(변수의 곱)를 다른 변수로 치환할 수 있다면 (r1*r3=a, r2*r4=b) 다항식에서도 강제 나눗셈 과정을 막을 수 있겠습니다만, 원래의 식에 적용시킬 수는 없어 의미가 없겠습니다. 2025 10.14