- TI nspire
[TI-nspire] 행렬 eigVL 고유값, eigVC 고유벡터 구하기
1. 자동으로 고유값 & 고유벡터 찾는 방법
고유값 함수(eigVL())와, 고유벡터(eigVC()) 함수는 [TI-nspire]에 내장되어 있으므로, 손쉽게 구할 수 있습니다.
- 행렬 a = 라고 하면

- eigVl()로 구한 고유값의 순서와, eigvc()로 구한 고유벡터는 그 순서가 서로 매칭됩니다.
- eigVc()로 구한 고유벡터는 정규화(=크기가 1) 된 값입니다.
2. 수동으로 고유값(Eigen Value) 찾는 방법
- 3×3 행렬을 변수 a 에 저장하고, 행렬식을 이용해 고유 방정식(p(λ))을 찾습니다.
- solve 로 고유값을 찾습니다. 2(중근)와 4가 나왔습니다.

└ 보기 좋으라고 그리스 문자 λ 를 찾아서 넣었습니다만, 그냥 알파벳 a~z 를 써도됩니다.
3. 수동으로 고유벡터(Eigen Vector) 찾는 방법
- rref(a-고유값) 으로 벡터 성분(v1, v2, v3)간의 관계식을 구할 수 있습니다.
- 벡터 성분간 관계식을 만족하는 벡터를 구하면 고유벡터가 됩니다.
(따라서 고유벡터는 유일(unique)한 값을 가지지 않습니다.)

ㄴ 고유값이 중근이므로 두개의 고유 벡터를 찾아보았습니다.
- 이번엔 고유값 4에 대한 고유벡터를 구해봅니다.

├ 이번에는 하나의 고유벡터만을 찾았습니다.
└ eigVc(a) 의 결과값은 정규화된 값임을 확인할 수 있습니다.
댓글7
-
세상의모든계산기
행렬a-λ 를 하게되면 자동으로 λ에 Identity Matrix 가 강제로 곱해져 계산됩니다.
행렬a 모든 원소값에 스칼라값을 빼려면 빼기부호 앞에 .(dot) 을 붙여 주어야 합니다.
-
세상의모든계산기
symmetric 한 행렬에 a대해 eigvc(a) 를 구했을 때...
서로 직교하는 3개의 벡터가 되면 좋겠지만... 그렇게 구해주진 않네요.

-
세상의모든계산기
행렬의 대각화 diagonalization 예제

eigvl 값을 찾았다면 대각행렬(diag)을 만들 수 있고,
대각행렬은 요소가 간단해서 역행렬을 매우 쉽게 찾을 수 있음.
p 와 p의 역행렬 그리고 d의 역행렬을 이용해 a의 역행렬을 계산할 수 있음.
ㄴ 다만, TI-nspire 에서는 정규화된 p를 찾아줘서 복잡하게 보이는 경향이 있음.
-
1
세상의모든계산기
2×2 (대칭) 행렬의 예

1. 고유값 {3,1} 찾기
2. 대각행렬 da 정의
3. 고유값을 이용해 고유 벡터 찾기
4. 고유벡터로 p 행렬 정의 p:=[[1 1][1 -1]]
5. da 와 p 를 이용해 a의 역함수 계산

6. 최종적으로 하나의 해를 찾을 수 있는데...
-
2
세상의모든계산기
대칭 행렬 \( a \)의 고유값과 고유벡터를 이용하여 해를 구하는 과정에서 굳이 \( D^{-1} \), \( P \), \( P^{-1} \)를 모두 계산하지 않고도, 고유값 분해와 고유벡터를 이용해 연립방정식을 더 간단하게 풀 수 있습니다.
1. 고유값 분해: 행렬 \( a \)의 고유값이 3과 1로 주어졌고, 각각의 고유벡터가 \( x_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \)와 \( x_2 = \begin{bmatrix} 1 \\ -1 \end{bmatrix} \)입니다.
2. 벡터 \( b \)를 고유벡터로 분해:
우선, \( b = \begin{bmatrix} 4 \\ 3 \end{bmatrix} \)를 두 고유벡터 \( x_1 \)과 \( x_2 \)의 선형 결합으로 표현합니다.
즉, \( b = c_1 x_1 + c_2 x_2 \)를 만족하는 \( c_1 \)과 \( c_2 \)를 구합니다.
- \( x_1 \)과 \( x_2 \)가 직교하므로, 내적을 통해 \( c_1 \)과 \( c_2 \)를 쉽게 구할 수 있습니다.
- \( c_1 = \dfrac{b \cdot x_1}{x_1 \cdot x_1} = \dfrac{4 \times 1 + 3 \times 1}{1^2 + 1^2} = \dfrac{4 + 3}{2} = \dfrac{7}{2} = 3.5 \)
- \( c_2 = \dfrac{b \cdot x_2}{x_2 \cdot x_2} = \dfrac{4 \times 1 + 3 \times (-1)}{1^2 + (-1)^2} = \dfrac{4 - 3}{2} = \dfrac{1}{2} = 0.5 \)
3. 해 \( x \) 구하기:
이제 고유값을 사용하여 \( x = \dfrac{c_1}{\lambda_1} x_1 + \dfrac{c_2}{\lambda_2} x_2 \)를 계산합니다.
- \( x = \dfrac{3.5}{3} \begin{bmatrix} 1 \\ 1 \end{bmatrix} + 0.5 \begin{bmatrix} 1 \\ -1 \end{bmatrix} \)
- 이를 계산하면:
$ x = \begin{bmatrix} \dfrac{3.5}{3} + 0.5 \\ \dfrac{3.5}{3} - 0.5 \end{bmatrix} $
따라서 연립방정식의 해는 \( x = \begin{bmatrix} \dfrac{5}{3} \\ \dfrac{2}{3} \end{bmatrix} \)입니다.
세상의모든계산기 님의 최근 댓글
V2 갱신 (nonK / K-Type 통합형) 예전에는 직접 코드작성 + AI 보조 하여 프로그램 만들었었는데, 갈수록 복잡해져서 손 놓고 있었습니다. 이번에 antigravity 설치하고, 테스트 겸 새로 V2를 올렸습니다. 직접 코드작성하는 일은 전혀 없었고, 바이브 코딩으로 전체 작성했습니다. "잘 했다 / 틀렸다 / 계산기와 다르다." "어떤 방향에서 코드 수정해 봐라." AI가 실물 계산기 각정 버튼의 작동 방식에 대한 정확한 이해는 없는 상태라서, V1을 바탕으로 여러차례 수정해야 했습니다만, 예전과 비교하면 일취월장 했고, 훨씬 쉬워졌습니다. 2026 02.04 A) 1*3*5*7*9 = 계산 945 B) √ 12번 누름 ㄴ 12회 해도 되고, 14회 해도 되는데, 횟수 기억해야 함. ㄴ 횟수가 너무 적으면 오차가 커짐 ㄴ 결과가 1에 매우 가까운 숫자라면 된 겁니다. 1.0016740522338 C) - 1 ÷ 5 + 1 = 1.0003348104468 D) × = 을 (n세트) 반복해 입력 ㄴ 여기서 n세트는, B에서 '루트버튼 누른 횟수' 3.9398949655688 빨간 부분 숫자에 오차 있음. (소숫점 둘째 자리 정도까지만 반올림 해서 답안 작성) 참 값 = 3.9362834270354... 2026 02.04 1. 분모 먼저 계산 400 × 10000 = 100 × 6000 = GT 결과값 4,600,000 역수 처리 ÷÷== 결과값 0.00000021739 2. 분자 곱하기 ×3 00 00 00 ×4 00 ×1 00 00 최종 결과 = 2,608,695.65217 2026 02.04 해결 방법 1. t=-1 을 기준으로 그래프를 2개로 나누어 표현 ㄴ 근데 이것도 tstep을 맞추지 않으면 문제가 발생할 것기도 하고, 상관이 없을 것 같기도 하고... 모르겠네요. 2. t=-1 이 직접 계산되도록 tstep을 적절하게 조정 tstep=0.1 tstep=0.01 도 해 보고 싶지만, 구간 크기에 따라 최소 tstep 이 변하는지 여기서는 0.01로 설정해도 0.015로 바뀌어버립니다. 그래서 tstep=0.02 로 하는게 최대한 긴 그래프를 얻을 수 있습니다. 2026 02.02 불연속 그래프 ti-nspire는 수학자처럼 연속적인 선을 그리는 것이 아니라, 정해진 `tstep` 간격으로 점을 찍고 그 점들을 직선으로 연결하는 'connect-the-dots' 방식으로 그래프를 그립니다. 여기에 tstep 간격에 따라 특이점(분모=0)이 제외되어 문제가 나타난 것입니다. seq(−2+0.13*t,t,0,23) {−2.,−1.87,−1.74,−1.61,−1.48,−1.35,−1.22,−1.09,−0.96,−0.83,−0.7,−0.57,−0.44,−0.31,−0.18,−0.05,0.08,0.21,0.34,0.47,0.6,0.73,0.86,0.99} t=-1 에서 그래프를 찾지 않습니다. 그 좌우 값인 −1.09, −0.96 두 값의 그래프값을 찾고, Window 범위를 보고 적당히 (연속되도록) 이어서 그래프를 완성하는 방식입니다. 그래서 t=-1에서도 그래프 값이 존재하는 것입니다. 2026 02.02