- CASIO 570
[fx-570ES][fx-350ES] TABLE 표 작성하기 (부제:해를 구하는 또하나의 방법)
1. TABLE 기능이란?
- TABLE MODE 로 변경
- f(x)=(x에 방정식) 을 입력

- x의 범위(=구간)를 입력
- x의 간격(=step) 을 입력
위 과정을 통해서 방정식의 x에 따른 y값을 찾아주는 기능입니다. 즉, 특정 구간에서 방정식을 만족하는 (x,y) 순서쌍을 찾아주는 기능이라고 할 수 있습니다.
※ 테이블로 만들 수 있는 순서쌍은 1회당 30개가 한계입니다.
(|END-START|÷STEP) < 30 을 만족해야 합니다. 그 이상의 간격으로 나누게 되면 ERROR (=Insufficient MEM) 가 발생합니다.
* [EX] 기종은 f(x)에 대해서는 45개의 순서쌍을, f(x)&g(x) 에 대해서는 30개의 순서쌍을 지원합니다.
※ [MS] 모델에는 TABLE 기능이 없습니다.
2. Table 활용법 : Solve 대신 해를 찾기 (반복=노가다)
계산기 한계로 인하여 Solve 기능으로도 해가 찾아지지 않는 방정식이 간혹 있습니다. 그런 방정식에서도 TABLE 기능을 이용하면 해를 찾을 수가 있습니다.
solve와 비교한 단점
- 해의 구간을 비교적 정확하게 알아야 노가다 횟수를 줄일 수 있음.
- 해의 정확도(자릿수)를 한자리 늘리기 위해서 Table 기능을 1회 더 반복해야 함.
- 불연속 함수일 때, 오류 가능성이 높음.
이러한 단점을 극복할 수 있다면, 해를 찾는데는 문제가 없습니다.
예) http://www.allcalc.org/11532#comment_17071
을 만족하는 해를 찾는 문제입니다. [fx-570ES Plus] 의 solve 로는 답이 잘 구해지지 않았습니다 (Can't Solve). 이걸 TABLE 기능으로 한번 구해보겠습니다.
- TABLE 모드로 변경합니다.
- f(x) = 를 입력합니다.
f(x) 자리에 1600이 올 수 없으므로 1600을 우변으로 이항해 입력합니다.
f(x) = 우변-좌변
- 이제 반복할 차례입니다. 해는 잘 모르지만 0~1 사이에 있는 것은 거의 확실합니다.
(법정 최고 금리 : 2021년 7월 7일부터 24%에서 20%로 인하)
Start?=0, End?=1, Step?=0.1 로 넣습니다.

F(X) 값이 음수에서 양수로 변하는 구간, 혹은 반대로 양수에서 음수로 변하는 구간이 해의 구간입니다. 이 문제에서는 방정식 특성상 음수에서 양수로 변하는 구간이 해의 구간입니다. 그런데 음수가 하나도 나오지 않았습니다. 처음의 ERROR 가 음수에 해당하는 구간인데 공교롭게 분모=0이라서 음수 대신 ERROR 가 나오게 되었습니다. (일단 구간을 알았다고 치고... 다음 단계로)
- 이제는 구간 및 간격의 자릿수를 각각 (소숫점) 한자리씩 늘립니다. Start?=0, End?=0.1, Step?=0.01
위 TABLE 표시 상태에는 【AC】 를 눌러 빠져나옵니다. 그리고 【=】 를 누르면 앞선 f(x) 입력을 그대로 가져갈 수 있습니다. 이번에도 음수가 보이지 않습니다. 한단계 더 진행합니다.
- Start?=0, End?=0.01, Step?=0.001

드디어 F(X) 값에 음수가 등장하기 시작합니다. 그리고 0.006까지는 음수이다가 0.007부터 양수로 바뀌는 것을 알 수가 있습니다. 이 곳이 바로 해가 존재하는 구간입니다. 다음 단계로 넘어갑니다.
- Start?=0.006, End?=0.007, Step?=0.0001

해의 구간이 0.0069~0.0070 사이임을 확인하였습니다. 다음 단계로

이렇게 반복하여 해가 0.006956~0.006957 사이에 있다는 것을 알았습니다.
(언제까지 반복할지는 구하려는 해의 정확도에 따라 알아서 결정할 일입니다)
- 실제 해를 구해보면 x=0.006956700480349... 인데, 틀리지 않았네요.
댓글7
-
세상의모든계산기
[fx-350ES] 예시
MENU - TABLE 기능으로 이동합니다.

- 식을 입력하고

- 구간 (시작/끝) 입력

└ 구간 시작 < 구간 끝
- 간격 (STEP) 입력

└ 간격은 항상 양수
- 해의 구간 확인

└ 연속이라는 가정하에 해(x|f(x)=0)가 -4<x<-3 사이에 있음을 알 수 있음.
- 구간을 자세하게 나누어서 반복
【AC】 를 누르면 f(x) 식 입력화면으로 돌아가는데, 구간/간격을 재설정해서 해의 범위를 좁혀감

└ 해는 -3.0545와 -3.0550 사이 어딘가에 있을 것으로 추정할 수 있습니다.
※ 한번에 해의 구간을 자세하게 구하지 못하는 이유는
한번에 TABLE 에 표현할 수 있는 순서쌍이 최대 30개뿐이기 때문입니다.
- 식을 입력하고
-
세상의모든계산기
[fx-570EX] 예시 http://www.allcalc.org/25354
0˚~15˚ 까지 매 1˚ 마다 ? ㎜를 이동하여 최종 10 ㎜ 를 이동하려고 할 때, 매 ˚ 마다 이동할 위치를 표시하려면?

- 1
-
- 1
- 1


세상의모든계산기 님의 최근 댓글
3×3 이상인 행렬의 행렬식 determinant https://allcalc.org/50536 2025 12.30 답에 이상한 숫자 14.2857142857가 들어간 것은 조건식에 소숫점(.) 이 들어가 있기 때문에 발생한 현상이구요. 100÷7 = 14.285714285714285714285714285714 소숫점 없이 분수로 식이 주어졌을 때와 결과적으로는 동일합니다. 2025 12.30 그럼 해가 무한히 많은지 아닌지 어떻게 아느냐? 고등학교 수학 교과과정에 나오는 행렬의 판별식(d, determinant)을 이용하면 알 수 있습니다. ㄴ 고교과정에서는 2x2 행렬만 다루던가요? 연립방정식의 계수들로 행렬을 만들고 그 행렬식(determinant)을 계산하여야 합니다. 행렬식이 d≠0 이면 유일한 해가 존재하고, d=0 이면 해가 없거나 무수히 많습니다. * 정상적인 경우 (`2y + 8z = 115`)의 계수 행렬: 1 | 1 1 0 | 2 | 1 0 -3.5 | 3 | 0 2 8 | 행렬식 값 = 1(0 - (-7)) - 1(8 - 0) = 7 - 8 = -1 (0이 아니므로 유일한 해 존재) * 문제가 된 경우 (`2y + 7z = 100`)의 계수 행렬: 1 | 1 1 0 | 2 | 1 0 -3.5 | 3 | 0 2 7 | 행렬식 값 = 1(0 - (-7)) - 1(7 - 0) = 7 - 7 = 0 (0이므로 유일한 해가 존재하지 않음) 2025 12.30 좀 더 수학적으로 말씀드리면 (AI Gemini 참고) 수학적 핵심 원리: 선형 독립성(Linear Independence) 3원 1차 연립방정식에서 미지수 x, y, z에 대한 단 하나의 해(a unique solution)가 존재하기 위한 필수 조건은 '주어진 세 개의 방정식이 서로 선형 독립(linearly independent) 관계에 있어야 한다'는 것입니다. * 선형 독립 (Linearly Independent): 어떤 방정식도 다른 방정식들의 조합(상수배를 더하거나 빼는 등)으로 만들어질 수 없는 상태입니다. 기하학적으로 이는 3개의 평면(각 방정식은 3D 공간의 평면을 나타냄)이 단 한 개의 점(해)에서 만나는 것을 의미합니다. * 선형 종속 (Linearly Dependent): 하나 이상의 방정식이 다른 방정식들의 조합으로 표현될 수 있는 상태입니다. 이 경우, 새로운 정보를 제공하지 못하는 '잉여' 방정식이 존재하는 것입니다. 기하학적으로 이는 3개의 평면이 하나의 선에서 만나거나(무수히 많은 해), 완전히 겹치거나, 혹은 평행하여 만나지 않는(해가 없음) 상태를 의미합니다. 질문자님의 사례는 '선형 종속'이 되어 무수히 많은 해가 발생하는 경우입니다. 2025 12.30 질문하신 연립 방정식은 미지수가 3개이고 모두 1차인 3원 1차 연립방정식입니다. 이상적으로 문제가 없다면 {x,y,z} 에 대한 좌표가 하나 나오게 됩니다. 원하는 답 {52.5, -2.5, 15} 그런데 '두개 조건(식)을 그대로 두고 나머지 하나를 변형하다 보니, 원하는 답이 나오지 않는 상황이 발생하였다.'고 질문하신 상황입니다. 3개의 조건식이 주어진 3원 1차 연립방정식은 조건을 변형해서 하나의 변수를 제거할 수 있습니다. 그러면 2개의 조건식으로 주어지는 2원 1차 연립방정식으로 변형이 됩니다. ㄴ 꼭 변형해야하는 것은 아니지만, 이것이 알아보기 쉽기 때문에 변형시키는 것입니다. 변경하지 않은 2개 조건의 식(con1) 을 이용해 위와 같이 하나의 y & z 1차 방정식을 유도할 수 있는데요. 변경하는 나머지 1개의 방정식이 con1에서 유도된 방정식과 동일하다면 하나의 답이 구해지지 않는 상황이 발생하는 것입니다. 계산기(ti-nspire)는 {x,y,z} 의 답이 하나가 아니고 무수히 많음을 c1 을 이용해서 표현해 준 것입니다. linear_independence_cond12.tns 2025 12.30